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Microarray data analysis is useful for understanding biological processes. A number of clustering algorithms
have been used to achieve this task. However, the performance of these methods can be significantly degraded
due to the presence of nonsignificant conditions. In this paper, we propose a robust clustering algorithm based
on a similarity measure. The key concept of the proposed similarity measure is to measure the similarity
between two data points by their subdimensions. For example, assume that x1, x2, and x3 are ten-dimensional
data vectors. The data point x3 is said to be closer to x1 than x2 if more than half of the dimensions of x1 and
x3 are closer to x1 than x2. Thus, if two patterns are very similar except for a small amount of features, this
measure will preserve the similarity. We have performed eight experiments to test the robustness of the
proposed method, including three synthetic data sets, three real world data sets, and two microarray data sets.
We also have compared the proposed method with four different clustering algorithms. Experimental results
show that the proposed method yields better results than existing clustering algorithms.
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I. INTRODUCTION

Microarray data analysis is useful for understanding bio-
logical processes from gene expressions. Genes having simi-
lar expression patterns imply that they are coregulated and
may have a common function. For example, Chu et al. stud-
ied the sporulation, which consists of meiosis and spore mor-
phogenesis �1�. Cho et al. used similar technique to study the
mitotic cell cycle �2�. Agrawal analyzed the cancers data set
by measuring the similarity among genes �3�. A microarray
data set can be viewed as an n�d matrix, where n is the
number of genes and d is the number of conditions �fea-
tures�. Usually, n is a very large number, in the order of
thousands �2,4�. If the microarray data is analyzed manually,
the procedure will be labor intensive. This leads to the prob-
lem of automated clustering by the computer.

A clustering algorithm can be used to group objects,
which have similar patterns, into the same class. There are
many different clustering algorithms. They include partition-
based clustering algorithm such as fuzzy c-means �FCM�
algorithm �5�, hierarchical-based method such as hierarchical
clustering algorithm with complete link �HC� �Ref. �6��,
distribution-based method such as the Gaussian mixture
model �GMM� �Ref. �7�� and a nonparametric method �8�.
They have been adopted to analyze gene expression data
�9–12�. All of these methods have the same idea in that they
make use of all the conditions in similarity or distance mea-
sures. A comprehensive review can be found in the papers by
Jiang et al. �4�, Jain et al. �13�, and Kaufman and Rousseeuw
�14�. For simplicity, we call these methods traditional clus-
tering algorithms. There is also another kind of clustering
method to analyze gene expression, subspace clustering,
which only takes some of the conditions into account. For
example, if there is a data set with 20 conditions, the sub-
space clustering may only take the first ten conditions for
data clustering, which is different from traditional clustering
algorithm taking all 20 conditions. The motivation of sub-
space clustering method is that the data set may contain non-

significant conditions that can influence the clustering re-
sults. The subspace clustering method can be roughly
separated into two classes. They are top-down �e.g., PRO-
CLUS �Ref. �15�� and HARP �Ref. �16��� and bottom-up
�e.g., CLIQUE �Ref. �17�� and ENCLUS �Ref. �18��� based
methods. A comprehensive review can be found in the paper
written by Parsons et al. �19�. Recently, biclustering algo-
rithms also have drawn great attention and they can be
viewed as a form of subspace clustering algorithm as well
�20�. In this review, Bergmann et al. introduce a biclustering
method to extract a subset of genes for data analysis �21�.
Most of these methods employ the same philosophy to
choose the conditions used for clustering. The condition is
selected if the density of the group in the data is large
enough. However, the largeness of the density needs a prior
knowledge of the data and this cannot always be determined
automatically. It employs user-defined parameters and the re-
sult may highly depend on such parameters. Recently, Yip et
al. introduced a subspace clustering method called HARP,
which outperforms many existing subspace clustering algo-
rithms. However, Yip et al. also reported that their subspace
clustering algorithm may not be able to yield more accurate
results than the traditional clustering algorithms �16�. Thus,
the problem of selecting the conditions is still a critical one.

In this paper, we introduce a proposed clustering algo-
rithm to handle this problem. The key concept of the pro-
posed algorithm is to measure the similarity between two
objects in several subdimensions. Here, we introduce a new
concept called subdimension. A data set is separated into p
parts, which are not disjoint. Each part has the same number
of input samples, namely genes in microarray data analysis,
as the original data, but a smaller number of dimensions,
namely conditions. In our formulation, each part has the
same number of dimensions and we call each of these di-
mensions a subdimension. If more than half the conditions
between two objects belong to the same group, these two
objects are said to belong to the same group. The idea of this
similarity measure has been demonstrated in our conference
presentation �22�. Experimental results show that the cluster-
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ing algorithm using this method gives better results than
other methods.

The organization of this paper is as follows. In Sec. II, we
briefly review the fuzzy c-means clustering algorithm. Then,
we introduce the proposed similarity measure in Sec. III.
After that, we introduce the proposed clustering method in
Sec. IV. Experimental results are given in Sec. V, and discus-
sions and conclusions are given in Sec. VI.

II. EXISTING CLUSTERING METHOD

In this section, we review the fuzzy c-means �FCM� clus-
tering algorithm �5�. Given a data set X= �x1 ,x2 , . . . ,xn�
where xi�Rd, xi= �xi

1 , . . .xi
d�T and d is the dimension of each

data vector. In the fuzzy c-means clustering algorithm, the
following objective function is minimized:

J�U,V;X� = �
i=1

n

�
k=1

c

�ik
m�xi − vk�2, �1�

where �·� refers to the 12 norm, m is a constant that is usually
set to 2, c is the total number of groups, and the membership
values satisfy the following two conditions:

0 � �ik � 1, 0 � i � n and 0 � k � c , �2�

�
k=1

c

�ik = 1, 0 � i � n . �3�

Setting the derivative of J�U ,V ;X� with respect to the un-
knowns vk and �ik equal to zero, we obtain the following
update equations:

�ik =
�xi − vk�−2/�m−1�

�
k=1

c

�xi − vk�−2/�m−1�

, �4�

vk =

�
i=1

n

�ik
mxi

�
i=1

n

�ik
m

, �5�

where vk represents the kth cluster center. The clustering al-
gorithm consists of two steps, updating the membership val-
ues from Eq. �4� and finding the center of each cluster from
Eq. �5�. The k-means clustering algorithm is a special case of
the FCM algorithm. Although we use the FCM algorithm in
this paper, our proposed method is applicable to other clus-
tering techniques.

FIG. 1. �Color online� Illustration of the effect of nonsignificant
condition to the similarity measure.

FIG. 2. �Color online� The mean values of the synthetic data set
1 and its partition matrices.
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III. PROBLEM STATEMENT

In this section, we indicate the problem of existing simi-
larity. Then, we introduce the idea of the proposed method.
We now consider three ten-dimension data points x1
= �0.5878,0.9511,0.9511,0.5878,0.0000,−0.5878,−0.9511,
−0.9511,−0.5878,−0.0000�T, x2= �4.9550,3.1490,3.3364,
2.0429, 0.0620, 0.9109, −0.6682, 3.7762, 3.3466, 4.2073 �T

and x3= �0.5878,0.9511,0.9511,0.5878,0.0000,−0.5878,
−0.9511,−0.9511,−0.5878,10.0000�T. These three patterns
are shown in Fig. 1. The one at the bottom is x1 while the
one above x1 is x2. The third vector x3 �marked by ·� is
almost the same as x1 except the tenth dimension, which is
far away from x1. The variation in the tenth dimension of x3
is due to the presence of nonsignificant conditions. x1 and x3
should belong to the same group. However, if we measure
their similarity using the 12 norm, we will find that x1 and x2
are more likely to be in the same group. The 12 norm dis-
tance between x1 and x2 is 	x1−x2	=9.4641 while the 12
norm distance between x1 and x3 is 	x1−x3	=10. Because of
this, a clustering algorithm may produce unreliable results.

Now, we introduce the proposed method by reformulating
the distance measure as follows. Let X=A1�A2� ¯

�Ad−1�Ad, where A j represents the jth dimension of the
data with 1� j�d. We redefine the dimension of X as fol-
lows: X=B1�B2� ¯ �Bp−1�Bp, where p�d, and B j
=A j1�A j2� ¯ �A j�s−1��A js where 1� j� p, 1� j1, j2,
…, js�d and s is the number of conditions in each subdi-
mension and s�d. Here the original data set X is repre-
sented by d nonoverlapping subsets A1, A2, … and Ad,
where A j simply represents the set of data values of all genes
along dimension �condition� j. To work with subdimensions,
we decompose X into many overlapping subsets B1, B2,
…and Bp, where B j is the union of s subsets A j1, A j2, … and
A js. An input data vector xi is now decomposed into p vec-
tors, xi�Bj�. In the subdimension-based similarity measure, xa

is closer to xb than to xc if

Card��j:	xa�Bj�
− xb�Bj�

	

� 	xa�Bj�
− xc�Bj�

	��

� Card��j:	xa�Bj�
− xb�Bj�

	 � 	xa�Bj�
− xc�Bj�

	�� ,

where card�S� refers to the cardinality �or the number of
elements� of the set S. The above equation defines a new
similarity measure between two objects, under which xa is
closer to xb than to xc if there xa�Bj� is closer to xb�Bj� than to
xc�Bj� in more subdimensions. The above classification crite-
rion can also be written as

Card��j:	xa�Bj�
− xb�Bj�

	 � 	xa�Bj�
− xc�Bj�

	��

p
�

1

2
, �6�

since

Card��j:	xa�Bj�
− xb�Bj�

	

� 	xa�Bj�
− xc�Bj�

	�� + Card��j:	xa�Bj�
− xb�Bj�

	

� 	xa�Bj�
− xc�Bj�

	��

equals the number of subdimension vector sets= p.
This means that xa is classified into the class of xb if for

more than 50% of subdimensions xa is closer to xb than to
xc; otherwise, it is classified into the class of xc. To have a
more reliable classification, we can require this ratio to be
greater than 50%, for example, we can set it at 60%. How-
ever, in doing so, we may have to reject xa, that is, we cannot
make a decision with enough confidence, if the ratio is be-
tween 50% and 60%. In practical applications, we can adjust
this ratio to trade off between false positive and rejection
rates in a pattern classification system.

Now, we apply this concept to the three patterns x1, x2
and x3. We first decompose these data vectors into subdimen-
sional ones. For example, we can decompose x1 into eight
subdimensional vectors, each of which has three dimensions,
�x1

1 ,x1
2 ,x1

3�T , �x1
2 ,x1

3 ,x1
4�T , . . . , �x1

8 ,x1
9 ,x1

10�T. Then we measure
the similarity between all corresponding subdimensional
vectors using the 12 norm. After the calculation, we say ob-
jects x1 and x3 are closer than x1 and x2 if more subdimen-
sional vectors between x1 and x3 suggest they are closer.
Obviously, for the three patterns x1, x2, and x3, all the sub-
dimensional vectors between x1 and x3 give a smaller value
than x1 and x2 except the last one, which contains the eighth,
ninth, and tenth dimensions. Thus, we say that x1 and x3 are
closer than x1 and x2.

IV. PROPOSED CLUSTERING ALGORITHM

In this section, we introduce the proposed clustering
method. There are five steps in the proposed method, with
the number of group ctotal given by the user. These steps are
given as follows.

Step 1: Let X= �xi
1 ,xi

2 , . . . ,xi
d−1 ,xi

d�T �for 1� i�n� be the
original data set sorted in ascending order with respect to the
standard derivation of each dimension. This data set is di-
vided into lower and upper halves: G1= �xi

1 ,xi
2 , . . . ,xi

d/2�T and
G2= �xi

d ,xi
d−1 , . . . ,xi

d/2+1�T. Then, G1 and G2 are mixed in an

TABLE I. Summary of the proposed method.

Algorithm:

1. The data set is sorted according to its dimensions.

For s=2 to 3, perform steps 2 to 4:

2. The data set X is divided into several
subdimensional sets, each with dimension s.

3. The FCM algorithm is applied to each
subdimensional set with the input
parameter c varied from c=2 to c=ctotal. Then, in
each subdimensional set, the
clustering results with largest Im�c� value will be
considered.

4. By making use of these clustering results, the
matrix Ps can be obtained.

5. The average partition matrix P= �P2+P3� /2 is
computed. By taking P as a distance
matrix, the hierarchical clustering algorithm is
applied to produce the final result.
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alternative manner: Gs= �xi
d ,xi

d/2xi
d−1 ,xi

d/2−1 , . . . ,xi
d/2+1 ,xi

1�T. If
the difference of standard derivation between two consecu-
tive dimensions of Gs is larger than a threshold � �which is
taken as 2 in all the experiments�, we will take Gs=X. We
take Gs as a sorted data set in the second step of the method.

Step 2: We divide the data sets X�Rd into several sub-
dimensional sets which have smaller dimensions: X�j�
= �xi�j�� where xi�j��Rs, j is the jth subdimension of the data
1� j� p and s�d. In this paper, s=2 and s=3 are adopted.
For example, xi has ten dimensions, its R2 and R3 sub-
dimensional sets will be �xi

1 ,xi
2�T , �xi

2 ,xi
3�T , . . . , �xi

9 ,xi
10�T, and

�xi
1 ,xi

2 ,xi
3�T , �xi

2 ,xi
3 ,xi

4�T , . . . , �xi
8 ,xi

9 ,xi
10�T, respectively.

Step 3: We apply the FCM algorithm to each of the sub-
dimensional sets with the input parameter from c=2 to c
=ctotal and evaluate the clustering results. This is equivalent
to conducting cluster validity with each subdimensional set.
For each subdimensional set, only the clustering result with
the largest Im�c� is considered. The original I index was pro-
posed by Maulik and Bandyopadhyay �23�. Im�c� is a modi-
fied version of the I index. The equation for Im�c� is given as
follows:

Im�c� = 
1

c
�

E1

Ec
� Dc�Q

, �7�

where the power Q is used to control the contrast between
different cluster configurations. In this paper, we take Q=1.
Ec and Dc are defined as

Ec = �
i=1

n

�
k=1

c

	ik	xi − vk	2, �8�

Dc = max
i,j=1

c

	vi − v j	 , �9�

where vk is the prototype of class k generated by the cluster-
ing algorithm. 	ik is a binary variable. If xi is a data point
closest to vk, 	ik=1. Otherwise, 	ik=0. The difference be-

tween the proposed modified I index and the original I index
is that the function Ec has a square power in the modified I
index while no square power in the original I index.

Step 4: Based on the results in step 3, we are able to get a
partition matrix P j

s. This partition matrix is a binary matrix.
If the subdimensional points xp�j� and xq�j� belong to the
same group, P j

s�p ,q�=1. Otherwise, P j
s�p ,q�=0. Now, we

define the variable Ps as the mean of these partition matrices,

Ps = 1 −
1

d − s
�
j=1

d−s+1

Ps
j . �10�

As we adopt s=2 and s=3 for subdimensional sets, there are
totally two variables P2 and P3. The average partition matrix
P is defined as P= �P2+P3� /2. Thus, if there are two data
points xp and xq and their conditions are very similar to each
other, the value P�p ,q� will be small.

Step 5: We consider the average partition matrix P as a
similarity matrix in hierarchical clustering algorithm. We
adopt the complete link method in the hierarchical clustering
algorithm to get the clustering result. Table I summarized
these five steps.

V. EXPERIMENTAL RESULTS

In this section, we conduct eight experiments to test the
robustness of the proposed method. Four different clustering
algorithms are chosen to compare the performance of the
proposed method. They are the GMM, the FCM algorithm,
the hierarchical clustering method with complete link �HC�,
and the HARP algorithm, which is a subspace clustering
method.

Each algorithm except HC will be performed ten times to
each real world data set. In all the real world data sets we
adopted in this paper, data samples have class labels. We
make use of these labels for evaluating the algorithms. For
example, after applying the FCM algorithm, we get c parti-
tions C1 , . . .Cc. In each original group, we find the number of

TABLE II. Clustering results for synthetic data set 1.

Groups GMM FCM HC HARP
Proposed
method

1 297 255 421 478 500

2 206 249 99 492 500

Total �Max� 503 504 520 970 1000

TABLE III. Clustering results for synthetic data set 2.

Groups GMM FCM HC HARP
Proposed
method

1 200 236 109 402 494

2 209 192 253 498 497

3 134 113 155 205 494

Total �Max� 534 541 517 1105 1485
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objects correctly recognized in C1 , . . .Cc so that the sum of
these numbers reaches maximum. Based on the number of
correctly classified objects, we will compare the algorithms
in three ways. They are the maximum, mean, and standard
derivation of the number of correctly recognized objects in
the ten runs. Also, we will show the number of correctly
recognized objects in each group for the best clustering result
among ten runs.

A. Synthetic data set

We perform three experiments based on three synthetic
data sets. In each of these data sets, some of the dimensions
have very large variance compared with other dimensions.
This situation is similar to the one we introduced in Sec. III.
This can make the conventional distance measure error
prone.

Synthetic data set 1: Now, we consider a ten-dimensional
data set with two groups. The first four dimensions are the
same and they are generated by two normally distributed
functions N�0,1� and N�5,1�. Each of them consists of 500
points. The last six dimensions are generated by a normally
distributed function which is N�0,100� with 1000 points.
Thus, the data matrix has a size of 1000�10. In this ex-
ample, there are six components that are nonsignificant con-
ditions for the two groups, while there are four components
that contain information of the two groups. Figure 2�a�
shows mean values of the two groups. The two groups can be
clearly separated in terms of the first four dimensions but not
in terms of the last six dimensions. If we apply traditional
clustering algorithms such as the FCM algorithm to the first
four dimensions of the data set, 100% accuracy will be ob-
tained. However, the insertion of nonsignificant information
from the extra six dimensions degrades the clustering result
significantly. The clustering results for this data set are given

in Table II. We can see that the GMM, FCM, and HC clus-
tering algorithms have only half accuracy. For the HARP
algorithm, it has a much higher accuracy than the nonsub-
space clustering algorithm. As the higher dimensions are
pruned in HARP, the subspace clustering algorithm has a
better performance than the nonsubspace clustering algo-
rithm. For the proposed method, it has 100% accuracy. One
may think that the clustering result of the proposed method
may be unreliable since the total number of dimensions that
do not contain the information of the two groups are more
than the total number of dimensions that contain the infor-
mation of the two groups. However, in the proposed method,
we divide the data set into several subdimensional sets and
conduct data clustering for each of them. In the third and
fourth steps of the proposed method, we found that only the
first four dimensions shared the same clustering results.
However, the last six dimensions produced very different
clustering results in each subdimensional set. Thus, the vari-
able P2 for the last six dimensions is just a random matrix
and does not contribute much to the average partition matrix
P. The matrix P2 is given in Fig. 2�b�. The darker pixels
represent larger values in the partition matrix and vice versa.
Figure 2�c� shows the average partition matrix P for syn-
thetic data 1 after permuting the matrix P so that the first
group consists of the first 500 elements. We can clearly see
that the proposed method can detect 500 points in one group
and another 500 points in another group.

Synthetic data set 2: Now, we consider a 24-dimensional
data set with three groups. The first four dimensions are gen-
erated by three normally distributed functions N�0,1�,
N�5,1�, and N�10,1�. Each of them consists of 500 points.
The last 21 dimensions are generated by the normally dis-
tributed function with different variance from 5 in the fifth
dimension to 100 in the 24th dimension, and the variances
between consecutive two dimensions have a difference of 5.
If we put the variances of the fifth to 24th dimensions in a

TABLE IV. Clustering results for synthetic data set 3.

Groups GMM FCM HC HARP
Proposed
method

1 200 198 117 471 500

2 209 173 323 470 500

3 134 155 66 295 500

Total �Max� 534 526 506 1236 1500

TABLE V. Clustering results for the iris data.

Groups GMM FCM HC HARP
Proposed
method

1 50 50 50 49 50

2 40 47 49 38 48

3 49 37 27 12 43

Total �Max� 139 134 126 99 141

Mean 124.9 134 / 99 141

Std 19.1512 0 / 0 0
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vector, it will become �5,10,15,20, . . . ,100�T. Thus, the data
matrix has a size of 1500�24. This synthetic data set is
different from the previous one. The elements of the syn-
thetic data set 1 that are nonsignificant conditions have ex-
actly the same variances. However, in this data set, the vari-
ances are not the same but monotonic increasing. The
clustering results for this data set are given in Table III.
Again, we can see that the GMM, FCM, and HC algorithms
have only half accuracy. For the HARP algorithm, the result
is not as good as the one given in synthetic data 1 �Table II�.
Its accuracy is reduced to around 75%. This shows that the
HARP algorithm could not prune the noise dimensions well
if they are very different. For the proposed method, it has
99% accuracy. In this experiment, we can see that the pro-
posed technique is able to yield more accurate results than
conventional methods.

Synthetic data set 3: Now, we consider a ten-dimensional
data set with three groups. The first four dimensions are gen-
erated by three normally distributed functions N�0,1�,
N�5,1�, and N�10,1�. Each of them consists of 500 points.
The last six dimensions are generated by the normally dis-
tributed function with two different variances. The fifth to
eighth dimensions are generated by normal distribution func-
tion with variance 10 while the ninth to tenth dimensions are
generated by normal distribution function with variance
10 000. Thus, the data matrix has a size of 1500�10. The
clustering results for this data set are given in Table IV.
Similar to synthetic data set 2, the GMM, FCM, and HC
clustering algorithms have only half accuracy. The HARP
algorithm has 83% accuracy. The proposed method has
100% accuracy. In these experiments, we can see that the
proposed method is able to yield more accurate results al-
though both subspace and traditional clustering algorithms
cannot.

B. Real world data

In this section, we will perform three other tests on three
real world data sets. They are iris data, wine data, and Wis-
consin diagnostic breast cancer �wdbc� data. These data sets
can be found on the website �24�. The iris data set contains
three groups and four features. Each group contains 50 ob-
jects. The wine data set has 178 objects with 13 features.
This data set contains three groups. The wdbc data set has
576 objects with 30 features. It contains two groups. The
clustering results for these three data sets are given in Tables
V–VII, respectively. Except the wine data, the HARP algo-
rithm yielded better results than other three traditional clus-
tering algorithms. For the traditional algorithms, the FCM
algorithm has a better performance. The proposed method
yields the largest numbers of correctly classified objects in
all cases.

C. Microarray data

In this subsection, we will perform two tests based on two
microarray data sets. They are yeast cell cycle data set and
sporulation data set.

Yeast cell cycle data: This data set was published by Cho
et al. �2�. It consisted of 6220 genes with 17 time points
taken at ten-minute intervals. In the study of Yeung et al.
�11�, a subset of 384 genes is adopted. This subset of data set
can be found on the website �25�. We normalized each gene
expression profile with zero mean and unit variance. This
data set has five cycle phases. They are early G1 phase, late
G1 phase, S phase, S2 phase, and M phase.

The clustering results are given in Table VIII. The number
of genes classified correctly using GMM is 252 and its mean
is nearly 200 with standard derivation nearly 30. The stan-
dard derivation is very high and this implies that the perfor-

TABLE VI. Clustering results for the wine data.

Groups GMM FCM HC HARP
Proposed
method

1 57 50 56 55 58

2 48 45 43 40 62

3 24 27 21 44 45

Total �Max� 129 122 120 139 165

Mean 124.7 122 / 139 165

Std 3.0569 0 / 0 0

TABLE VII. Clustering results for the wdbc data.

Groups GMM FCM HC HARP
Proposed
method

1 351 356 357 354 344

2 155 130 20 67 192

Total �Max� 506 486 377 421 536

Mean 484.1 486 / 421 516.9

Std 23.8768 0 / 0 13.4367
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mance of the GMM is highly dependent on the initial guess.
The FCM algorithm produces exactly the same results in the
ten runs and classifies 216 genes correctly. The HC method
classifies 256 genes correctly, and this is better than the
GMM and the FCM algorithms. The HARP classifies 243
genes correctly and it is not better than either partition- or
hierarchical-based method. The proposed method produces
283, the largest number of correctly classified objects. Its
standard derivation is 0.9487, which is very small.

Sporulation data: This data set consists of 6118 genes �1�
and can found on the website �26�. We only take the genes
with the value of root mean square of the log2 transformed
data greater than 1.13. After the preprocessing, we get a sub-
set of the data, which contains 1136 genes of the following
seven phases: rapid transient induction �“metabolic”�, early I
induction, early II induction, early-middle induction, middle
induction, mid-late induction, and late induction.

The clustering result is given in Table IX. The GMM
method yields a good result, with 324 genes classified cor-
rectly. This is better than the HARP, FCM, and HC algo-
rithms. However, it has a very large standard derivation. The
FCM and HC algorithms are very stable and produce the
same results, with 280 genes classified correctly. The HARP
algorithm classifies 256 genes correctly, which has the poor-
est performance. The proposed method classifies 353 genes
correctly, which offers the best performance. Although the
results have a large standard derivation, the number of cor-

rectly classified genes is still larger than that produced by the
GMM algorithm. Furthermore, in the table, we can see that
most of the methods failed to detect genes in the mid-late
and late stages, but the proposed method successfully de-
tected three and 33 genes in these two stages, respectively.

VI. CONCLUSIONS AND DISCUSSIONS

Clustering is an important procedure used in microarray
data analysis. A major goal of microarray data analysis is to
identify genes with similar functions. There are many meth-
ods proposed to handle this problem. The Gaussian mixture
model and the fuzzy c-means algorithm are two well-known
clustering algorithms. These methods assume that all features
are significant for gene classification. In these and other com-
monly used clustering methods, the key idea is to identify
two genes belonging to a group by measuring the distance
between them using all features or conditions. However, in
microarray data analysis, some of the conditions may be
nonsignificant and noisy. They may degrade the classification
performance. There is another kind of clustering algorithm
called subspace clustering, which assumes that there are
some nonsignificant conditions for gene classification. This
method prunes some conditions and conducts clustering for
the remaining conditions. However, the choice of the suitable
conditions is still a critical problem. For the real world data,
such as the iris and wdbc data sets, the subspace clustering

TABLE IX. Clustering results for the sporulation data.

GMM FCM HC HARP
Proposed
method

Metabolic 4 1 1 0 3

Early I 172 172 244 241 173

Early II 24 7 4 0 38

Early-mid 95 66 8 5 43

Middle 29 32 21 9 60

Mid-late 0 2 2 1 3

Late 0 0 0 0 33

Total �Max� 324 280 280 256 353

Mean 306.9 280 / 256 340.4

Std 13.4449 0 / 0 21.8744

TABLE VIII. Clustering results for the yeast cell cycle data.

Phases GMM FCM HC HARP
Proposed
method

Early G1 60 50 48 41 48

Late G1 115 67 112 116 120

S phase 31 10 1 23 28

G2 24 38 46 31 35

M phase 22 51 49 32 52

Total �Max� 252 216 256 243 283

Mean 199.9 216 / 243 282.3

Std 29.6403 0 / 0 0.9487
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algorithm does not yield a better result than the traditional
ones.

In this paper, we have introduced a concept for data clus-
tering. The proposed algorithm does not prune any condi-
tions in the data set and does not need any prior knowledge
for selecting significant conditions. The key concept of the
proposed algorithm is to measure the similarity between two
objects in a number of subdimensions. Such a similarity
measure reduces the effects of noise and outliers in the data.
Experiments showed that the proposed idea gives more ac-
curate results. We conclude that the concept of measuring the
similarity between two objects using subdimensions is more

robust than pruning nonsignificant conditions. In the future,
we will apply this concept to supervised classification prob-
lems.
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